The General Properties of Discrete-Time Competitive Dynamical Systems
نویسندگان
چکیده
منابع مشابه
The General Properties of Discrete-Time Competitive Dynamical Systems
For strongly competitive discrete-time dynamical systems on a strongly ordered topological vector space, it is proved that any αor ω-limit set is unordered and lies on some invariant hypersurface with codimension one, which generalizes Hirsch’s results for competitive autonomous systems of ordinary differential equations to competitive maps in a very general framework and implies the Sarkovskii...
متن کاملSmoothness of the Carrying Simplex for Discrete-time Competitive Dynamical Systems: A Characterization of Neat Embedding
The paper is concerned with the question of smoothness of the carrying simplex S for a discrete-time dissipative competitive dynamical system. We give a necessary and sufficient criterion for S being a C submanifold-with-corners neatly embedded in the nonnegative orthant, formulated in terms of inequalities between Lyapunov exponents for ergodic measures supported on the boundary of the orthant...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملTime Step Rescaling Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms ar...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2001
ISSN: 0022-0396
DOI: 10.1006/jdeq.2001.3989